Exploiting surface consistency for surface-wave characterization and mitigation — Part 2: Application to 3D data

Author:

Krohn Christine E.1,Routh Partha S.2

Affiliation:

1. Formerly ExxonMobil Upstream Research Co., Spring, Texas, USA; presently Krohn Geophysics, Durham, North Carolina, USA..

2. ExxonMobil Upstream Research Co., Spring, Texas, USA..

Abstract

We present a case history demonstrating the 3D implementation of the surface-wave impulse estimation and removal (SWIPER) method. SWIPER is a tomographic inversion method that is able to predict and remove complex surface waves, which are multimodal and heterogeneous. The inversion generates surface-consistent model parameters, which correlate with near-surface elevation. These parameters include a surface map of the propagation velocity and attenuation values for each surface-wave mode as a function of frequency. The method also determines variations in source coupling as a function of frequency, which also correlate with the near-surface elevation changes. We show that the method works equally well with a fully sampled and decimated 3D dynamite-sourced data set. We start with a linear single-mode inversion and use the results to generate the starting model for a subsequent three-mode nonlinear inversion. The resulting velocity-dispersion grid has greater lateral resolution and extends to higher frequencies than that generated by a conventional array beam forming method. The propagation and source coupling parameters can be used together to predict the surface-wave waveforms, which are then adaptively subtracted from the data on a trace-to-trace basis. We demonstrate with decimated data that low-frequency reflections can be preserved, even when the data are highly aliased and would be removed by traditional multichannel filters.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3