Surface wave tomography using 3D active-source seismic data

Author:

Barone Ilaria1ORCID,Kästle Emanuel2,Strobbia Claudio3,Cassiani Giorgio1ORCID

Affiliation:

1. Università di Padova, Dipartimento di Geoscienze, Padova 35131, Italy.(corresponding author); .

2. Freie Universität Berlin, Institute of Geological Sciences, Berlin 12249, Germany..

3. RealTimeSeismic, Pau 64053, France..

Abstract

Surface wave tomography (SWT) is a powerful and well-established technique to retrieve 3D shear-wave (S-wave) velocity models at the regional scale from earthquakes and seismic noise measurements. We have applied SWT to 3D active-source data, in which higher modes and heterogeneous spatial sampling make phase extraction challenging. First, synthetic traveltimes calculated on a dense, regular-spaced station array are used to test the performance of three different tomography algorithms (linearized inversion, Markov chain Monte Carlo [MCMC], and eikonal tomography). The tests suggest that the lowest misfit to the input model is achieved with the MCMC algorithm, at the cost of a much longer computational time. Then, real phases were extracted from a 3D exploration data set at different frequencies. This operation included an automated procedure to isolate the fundamental mode from higher order modes, phase unwrapping in two dimensions, and the estimation of the zero-offset phase. These phases are used to compute traveltimes between each source-receiver couple, which are input into the previously tested tomography algorithms. The resulting phase-velocity maps show good correspondence, highlighting the same geologic structures for all three methods. Finally, individual dispersion curves obtained by the superposition of phase-velocity maps at different frequencies are depth inverted to retrieve a 3D S-wave velocity model.

Funder

Fondazione Cassa di Risparmio di Padova e Rovigo

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3