Ground-penetrating radar antenna orientation effects on temperate mountain glaciers

Author:

Langhammer Lisbeth1ORCID,Rabenstein Lasse2,Bauder Andreas3,Maurer Hansruedi1ORCID

Affiliation:

1. ETH Zurich, Institute of Geophysics, Zurich, Switzerland..

2. Formerly ETH Zurich, Institute of Geophysics, Zurich, Switzerland; presently Drift & Noise Polar Services GmbH, Bremen, Germany..

3. ETH Zurich, Laboratory of Hydraulics, Hydrology and Glaciology, Zurich, Switzerland..

Abstract

Ground-penetrating radar (GPR) surveys on glaciers are generally restricted to a single pair of bistatic dipole antennas orientated either parallel or perpendicular to the surveying direction. Extensive helicopter-borne and ground-based GPR investigations on the Glacier d’Otemma, Switzerland, demonstrated that the detectability of the ice-bedrock interface varies substantially with dipole orientation. We recorded several across and along profiles using two different commercial GPR systems operated with 15, 25, 50, and 70 MHz antennas. Dipole alignments parallel to the glacier flow generated considerably stronger and more coherent bedrock reflections compared with a perpendicular dipole setup. We observed the behavior for all the systems and antenna frequencies that we used. To help explain these findings, we performed 3D numerical modeling using the open source software gprMax. Simulations with 20 MHz transmitting and receiving dipoles indicated that the changes of the bedrock reflection amplitude are primarily governed by the bedrock topography. Scattering and intrinsic attenuation may also influence the amplitudes of the bedrock reflections, but these effects seem to be much less pronounced. Evidently, to increase the GPR bedrock reflection quality, dipole antennas should be orientated parallel to the glacier flow direction on a glacier confined to a valley. Because the directional dependence is a first-order effect, it is advisable to perform multicomponent surveys when the general shape of the bedrock topography is unknown. The multicomponent setup preferably consists of two sets of dipole antennas, each in broadside configuration and the sets being orthogonal to each other.

Funder

ETH Zurich

Swiss Competence Center for Energy Research - Supply of Electricity

Swiss Geophysical Commission

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3