The Influence of the Internal Properties of River Ice on Ground Penetrating Radar Propagation

Author:

Han Hongwei12,Li Yu1,Li Wanyun1,Liu Xingchao1,Wang Enliang12,Jiang Haiqiang12

Affiliation:

1. School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China

2. Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Harbin 150030, China

Abstract

Ground penetrating radar (GPR) has proven to be a very effective method for examining ice thickness. However, two preconditions must be met for this approach to be useful; the round-trip travel time of electromagnetic (EM) waves and radar transmission speed in the ice must be known. These issues are problematic because many factors affect radar transmission speed in ice, including impurities, physical properties such as porosity and density, and temperature. Results show that if these factors are not taken into account and a signal velocity of 0.17 m/ns in pure ice is used to estimate thickness, overestimates will result. We carried out a series of GPR surveys using dual channel host 200 MHz shielded antennas at the Toudaoguai Hydrological Station on the Yellow River, China, and collected samples to analyze ice impurities and physical properties. The results show that the ice crystal types include frazil, granular, and column at the Toudaoguai Hydrologic Station section. Our analysis of ice gas bubble and sediment content showed that the gas bubble volume content is between 11.95 and 13.0% in the frazil ice and between 7.9% and 8.6% in granular and columnar ice. At the same time, the ice sediment content ranged between 0.11‰ and 0.57‰, and the average was 0.24‰ in granular and columnar ice, which was about one-tenth that of the suspended sediment concentration in water. Additionally, a combination of GPR data as well as ice impurities, porosity, density, and temperature enabled us to provide insights on the variability of radar transmission speed and the equivalent dielectric permittivity in river ice. Our extensive observations reveal that radar transmission speed falls between 0.141 m/ns and 0.164 m/ns and that the equivalent dielectric permittivity of river ice increases in concert with ice temperature.

Funder

Natural Science Foundation of Heilongjiang Province of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference52 articles.

1. Presence of algae in freshwater ice cover of fluvial LAC Saint-Pierre (St. Lawrence River, Canada);Frenette;J. Phycol.,2008

2. Quantifying Northern Hemisphere freshwater ice;Brooks;Geophys. Res. Lett.,2013

3. Arctic freshwater ice and its climatic role;Prowse;AMBIO,2011

4. Framework for control of dynamic ice breakup by river regulation: Regulated Rivers;Ferrick;Res. Manag.,1989

5. Neuro-fuzzy river ice breakup forecasting system;Mahabir;Cold Reg. Sci. Technol.,2006

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3