Arbitrary source and receiver positioning in finite‐difference schemes using Kaiser windowed sinc functions

Author:

Hicks Graham. J.1

Affiliation:

1. Formerly Queen's University, Department of Geological Sciences, Kingston, Ontario K7L 3N6, Canada; presently TotalFinaElf Exploration UK, Geoscience Research Centre, 33 Cavendish Square, London W1G 0PW, United Kingdom.

Abstract

In finite‐difference methods a seismic source can be implemented using either initial wavefield values or body forces. However, body forces can only be specified at finite‐difference nodes, and, if using initial values, a source cannot be located close to a reflecting boundary or interface in the model. Hence, difficulties can exist with these schemes when the region surrounding a source is heterogeneous or when a source either is positioned between nodes or is arbitrarily close to a free surface. A completely general solution to these problems can be obtained by using Kaiser windowed sinc functions to define a small region around the true source location that contains several nodal body forces. Both monopole and dipole point sources can be defined, enabling many source types to be implemented in either acoustic or elastic media. Such a function can also be used to arbitrarily locate receivers. If the number of finite‐difference nodes per wavelength is four or more (and with a source region half‐width of only four nodes) this scheme results in insignificant phase errors and in amplitude errors of no more than 0.1%. Numerical examples for sources located less than one node from either a free surface or an image source demonstrate that the scheme can be used successfully for any surface‐source or multisource configuration.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3