Assessing estimated velocity-depth models: Finding error bars in tomographic inversion

Author:

Chiţu D. A.12,Al-Ali M. N.12,Verschuur D. J.12

Affiliation:

1. Delft University of Technology, Department of Applied Physics, Laboratory of Acoustical Imaging and Sound Control, Delft, The Netherlands. .

2. Saudi Aramco, KAUST Research Development Department, Dhahran, Saudi Arabia. .

Abstract

In conventional migration velocity analysis methods, a velocity model is estimated that results in flattened events in common-image gathers. However, after this process, no information is available on the accuracy of this velocity model. A statistical analysis of velocity-model parameters is very difficult because of the integrated nature of the process. In common-focus-point technology, velocity estimation is split into two processes: a first step to estimate one-way focusing operators from the seismic data and a second step to translate these one-way propagation operators into a velocity-depth model. Because the second step does not involve seismic data and uses a hands-off model parameterization, a statistical analysis of the inversion result becomes rather straightforward. We developed a methodology for obtaining a suite of possible solutions, from which statistical measures can be extracted. By varying initial settings, the inversion of one-way traveltimes provides a space of solutions. Rather than having a single estimated model, we can obtain an ensemble of models. By performing statistical analysis of this ensemble, the error bars of the estimated velocity model can be retrieved. The procedure was tested for a 2D synthetic and field data set, for which the latter compares favorably to a conventional two-way traveltime tomography approach. The information provided by such an analysis is important because it shows the reliability of the final estimated model and could provide feedback for acquisition geometry design. More or better data might be needed to obtain a model to which a smaller degree of ambiguity is associated.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3