A strategy for nonlinear elastic inversion of seismic reflection data

Author:

Tarantola Albert1

Affiliation:

1. Institut de Physique du Globe de Paris, Université de Paris VI, 4 place Jussieu, F-75252 Paris Cedex 05, France

Abstract

The problem of interpretation of seismic reflection data can be posed with sufficient generality using the concepts of inverse theory. In its roughest formulation, the inverse problem consists of obtaining the Earth model for which the predicted data best fit the observed data. If an adequate forward model is used, this best model will give the best images of the Earth’s interior. Three parameters are needed for describing a perfectly elastic, isotropic, Earth: the density ρ(x) and the Lamé parameters λ(x) and μ(x), or the density ρ(x) and the P-wave and S-wave velocities α(x) and β(x). The choice of parameters is not neutral, in the sense that although theoretically equivalent, if they are not adequately chosen the numerical algorithms in the inversion can be inefficient. In the long (spatial) wavelengths of the model, adequate parameters are the P-wave and S-wave velocities, while in the short (spatial) wavelengths, P-wave impedance, S-wave impedance, and density are adequate. The problem of inversion of waveforms is highly nonlinear for the long wavelengths of the velocities, while it is reasonably linear for the short wavelengths of the impedances and density. Furthermore, this parameterization defines a highly hierarchical problem: the long wavelengths of the P-wave velocity and short wavelengths of the P-wave impedance are much more important parameters than their counterparts for S-waves (in terms of interpreting observed amplitudes), and the latter are much more important than the density. This suggests solving the general inverse problem (which must involve all the parameters) by first optimizing for the P-wave velocity and impedance, then optimizing for the S-wave velocity and impedance, and finally optimizing for density. The first part of the problem of obtaining the long wavelengths of the P-wave velocity and the short wavelengths of the P-wave impedance is similar to the problem solved by present industrial practice (for accurate data interpretation through velocity analysis and “prestack migration”). In fact, the method proposed here produces (as a byproduct) a generalization to the elastic case of the equations of “prestack acoustic migration.” Once an adequate model of the long wavelengths of the P-wave velocity and of the short wavelengths of the P-wave impedance has been obtained, the data residuals should essentially contain information on S-waves (essentially P-S and S-P converted waves). Once the corresponding model of S-wave velocity (long wavelengths) and S-wave impedance (short wavelengths) has been obtained, and if the remaining residuals still contain information, an optimization for density should be performed (the short wavelengths of impedances do not give independent information on density and velocity independently). Because the problem is nonlinear, the whole process should be iterated to convergence; however, the information from each parameter should be independent enough for an interesting first solution.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 784 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3