Exact seismic velocities for transversely isotropic media and extended Thomsen formulas for stronger anisotropies

Author:

Berryman James G.1

Affiliation:

1. Lawrence Berkeley National Laboratory, Berkeley, California, U.S.A. .

Abstract

A different type of approximation to the exact anisotropic wave velocities as a function of incidence angle in transversely isotropic (TI) media is explored. This formulation extends Thomsen’s weak anisotropy approach to stronger deviations from isotropy without significantly affecting the equations’ simplicity. One easily recognized improvement is that the extreme value of the quasi-SV-wave speed [Formula: see text] is located at the correct incidence angle [Formula: see text] rather than always being at the position [Formula: see text]. This holds universally for Thomsen’s approximation, although [Formula: see text] actually is never correct for any TI anisotropic medium. Wave-speed magnitudes are more closely approximated for most values of the incidence angle, although there may be some exceptions depending on actual angular location of the extreme value. Furthermore, a special angle [Formula: see text] (close to theextreme point of the SV-wave speed and also needed by the new formulas) can be deduced from the same data normally used in weak anisotropy data analysis. All the main technical results are independent of the physical source of the anisotropy. Two examples illustrate the use of obtained results based on systems having vertical fractures. The first set of model fractures has axes of symmetry randomly oriented in the horizontal plane. Such a system is then isotropic in the horizontal plane and thus exhibits vertical transversely isotropic (VTI) symmetry. The second set of fractures also has its axes of symmetry in the horizontal plane, but (it is assumed) these axes are aligned so the system exhibits horizontal transverse isotropic (HTI) symmetry. Both VTI and HTI systems, as well as any other TI medium (whether because of fractures, layering, or other physical causes), are easily treated with the new phase-speed formulation.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3