Magnetic interpretation using a least-squares, depth-shape curves method

Author:

Abdelrahman El-Sayed M.1,Essa Khalid S.1

Affiliation:

1. Cairo University, Geophysics Department, Faculty of Science, Giza, Egypt.

Abstract

We have developed a least-squares approach to depth determination from residual magnetic anomalies caused by simple geologic structures. By normalizing the residual magnetic anomaly using three characteristic points and their corresponding distances on the anomaly profile, the problem of determining depth from residual magnetic anomalies has been transformed into finding a solution to a nonlinear equation of the form z = f(z). Formulas have been derived for spheres, horizontal cylinders, thin dikes, and contacts. The method is applied to synthetic data with and without random noise. We have also developed a method using depth-shape curves to simultaneously define the shape and depth of a buried structure from a residual magnetic anomaly profile. The method is based on determining the depth from the normalized residual anomaly for each shape factor using the least-squares method mentioned above. The computed depths are plotted against the shape factors on a graph. The solution for the shape and depth of the buried structure is read at the common intersection of the depth-shape curves. The depth-shape curves method was successfully tested on theoretical data with and without random noise and applied to a known field example from Ontario.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3