Affiliation:
1. Cairo University, Geophysics Department, Faculty of Science, Giza, Egypt.
Abstract
We have developed a least-squares approach to depth determination from residual magnetic anomalies caused by simple geologic structures. By normalizing the residual magnetic anomaly using three characteristic points and their corresponding distances on the anomaly profile, the problem of determining depth from residual magnetic anomalies has been transformed into finding a solution to a nonlinear equation of the form z = f(z). Formulas have been derived for spheres, horizontal cylinders, thin dikes, and contacts. The method is applied to synthetic data with and without random noise. We have also developed a method using depth-shape curves to simultaneously define the shape and depth of a buried structure from a residual magnetic anomaly profile. The method is based on determining the depth from the normalized residual anomaly for each shape factor using the least-squares method mentioned above. The computed depths are plotted against the shape factors on a graph. The solution for the shape and depth of the buried structure is read at the common intersection of the depth-shape curves. The depth-shape curves method was successfully tested on theoretical data with and without random noise and applied to a known field example from Ontario.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献