Wavelet distortion correction due to domain conversion

Author:

Bansal Rishi1,Matheney Mike1

Affiliation:

1. ExxonMobil Upstream Research Company, Houston, Texas, U.S.A. .

Abstract

Converted-wave (PS) data, when converted to PP time, develop time- and location-varying compression of the seismic wavelet due to a variable subsurface [Formula: see text] [Formula: see text]. The time-dependent compression distorts the wavelet in a seismic trace. The lack of a consistent seismic wavelet in a domain-converted PS volume can eventually lead to an erroneous joint PP/PS inversion result. Depth-converted seismic data also have wavelet distortion due to velocity-dependent wavelet stretch. A high value of seismic velocity produces more stretch in a seismic wavelet than a low value. Variable wavelet stretch renders the depth data unsuitable for attribute analysis. A filtering scheme is proposed that corrects for distortion in seismic wavelets due to domain conversions (PS to PP time and time-to-depth) of seismic data in an amplitude-preserving manner. The method uses a Fourier scaling theorem to predict the seismic wavelet in the converted domain and calculates a shaping filter for each time/depth sample that corrects for the distortion in the wavelet. The filter is applied to the domain-converted data using the method of nonstationary filtering. We provide analytical expressions for the squeeze factor [Formula: see text] that is used to predict the wavelet in the converted domain. The squeeze factor [Formula: see text] for PS to PP time conversion is a function of the subsurface [Formula: see text] whereas for PP time-to-depth conversion [Formula: see text] is dependent on subsurface P-wave velocity. After filtering, the squeezed wavelets in domain-converted PS data appear to have resulted from a constant subsurface [Formula: see text], which we denote as [Formula: see text]. Similarly, the filtered depth-converted data appear to have resulted from a constant subsurface P-wave velocity [Formula: see text].

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3