Estimation of the depth-domain seismic wavelet based on velocity substitution and a generalized seismic wavelet model

Author:

Zhang Jie1ORCID,Chen Xuehua2ORCID,Jiang Wei1ORCID,Liu Yunfei1,Xu He1

Affiliation:

1. Chengdu University of Technology, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu, China and Chengdu University of Technology, Key Laboratory of Earth Exploration and Information Techniques of Ministry of Education, Chengdu 610059, China.

2. Chengdu University of Technology, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu, China and Chengdu University of Technology, Key Laboratory of Earth Exploration and Information Techniques of Ministry of Education, Chengdu 610059, China. (corresponding author)

Abstract

Depth-domain seismic wavelet estimation is the essential foundation for depth-imaged data inversion, which is increasingly used for hydrocarbon reservoir characterization in geophysical prospecting. The seismic wavelet in the depth domain stretches with increasing medium velocity and compresses with decreasing medium velocity. The commonly used convolutional model cannot be directly used to estimate depth-domain seismic wavelets due to velocity-dependent wavelet variations. We have developed a separate parameter estimation method for estimating depth-domain seismic wavelets from poststack depth-domain seismic and well-log data. Our method is based on the velocity substitution and depth-domain generalized seismic wavelet model defined by the fractional derivative and reference wavenumber. Velocity substitution allows wavelet estimation with the convolutional model in the constant-velocity depth domain. The depth-domain generalized seismic wavelet model allows for a simple workflow that estimates the depth-domain wavelet by estimating two wavelet model parameters. In addition, this simple workflow does not need to perform searches for the optimal regularization parameter and wavelet length, which are time-consuming in least-squares (LS)-based methods. The limited numerical search ranges of the two wavelet model parameters can easily be calculated using the constant phase and peak wavenumber of the depth-domain seismic data. Our method is verified using synthetic and real seismic data and further compared with LS-based methods. The results indicate that our method is effective and stable even for data with a low signal-to-noise ratio.

Funder

National Natural Science Foundation of China

Central Funds Guiding the Local Science and Technology Development

National Science and Technology Major Project of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3