Passive seismic measurement of seismic attenuation in Delaware Basin

Author:

Drwiła Małgorzata1,Wcisło Miłosz2,Anikiev Denis34,Eisner Leo4,Keller Randy4

Affiliation:

1. Formerly Seismik s.r.o., Prague, Czech Republic; presently University of Leeds, School of Earth and Environment, Leeds, West Yorkshire, UK..

2. Czech Academy of Sciences, Institute of Rock Structure and Mechanics, and Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic..

3. Deutsches Geoforschungszentrum Potsdam, Potsdam, Brandenburg, Germany..

4. Seismik s.r.o., Prague, Czech Republic..

Abstract

Local earthquake activity can be employed to measure attenuation (the effective quality factor [Q]) and characterize production in the Delaware Basin, Texas, USA. To illustrate this, we employed data from the recently installed Texas Seismic Network (TexNet) seismic stations collected in the west Texas area between April 2017 and March 2018. Earthquake activity in the Delaware Basin has increased in comparison to the previous 20 years, which has resulted in numerous high-quality events suitable for this analysis. The high signal-to-noise ratio events were used to estimate effective Q factors using the peak frequency method on the sediments of the Delaware Basin. The effective attenuation of the sedimentary basin is 90 for P-waves and 140 for S-waves (both with uncertainty of approximately 30), indicating an unusually low attenuation (high Q) for S-waves relative to the P-waves. This is consistent with attenuation of a saturated sedimentary basin because the saturation results in less attenuation of S-waves. Additionally, we observe an increase of the effective Q factor with distance between the station and events consistent with rays sampling the deeper, less-attenuating, and less-saturated portions of the basin and even basement. Inverted effective attenuation coefficients were used to calculate moment magnitudes, which were consistent with those seen in the TexNet array.

Funder

Univerzita Karlova v Praze

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3