Two-grid genetic algorithm full-waveform inversion

Author:

Mazzotti Alfredo1,Bienati Nicola2,Stucchi Eusebio3,Tognarelli Andrea1,Aleardi Mattia1,Sajeva Angelo1

Affiliation:

1. University of Pisa, Department of Earth Sciences.

2. Eni, Upstream & Technical Services.

3. University of Milan, Department of Earth Sciences.

Abstract

Full-waveform inversion (FWI) tries to estimate velocity models of the subsurface with improved accuracy and resolution compared to conventional methods. To be successful, it needs input data that is rich in low frequencies and possibly characterized by long source-to-receiver offsets. The correct solution of the inverse problem by means of local methods is facilitated if the starting model lies in the “valley” of the cost-function global minimum. We explore the possibility of relaxing this requirement by using genetic algorithms, a stochastic optimization method, as the driver of the FWI (GA FWI). However, stochastic methods are affected by the “curse of dimensionality,” meaning that they require huge and sometimes even unaffordable computer resources for inverse problems with many unknowns and costly forward modeling. Therefore, we need to adopt proper stratagems in the inversion and limit our goal to the estimation of a velocity macromodel that is of a model with only the long-wavelength velocity structures, which could eventually act as the starting model for a local, higher-resolution gradient-based inversion. To this end, in the GA FWI we parametrize the subsurface with two grids: (1) a coarse grid with widely spaced nodes, that is unknowns, for the inversion, and (2) a fine grid with shorter spacing for the modeling. As a side result, we can also have an estimate of the uncertainty at the solution nodes of the grid. The approach we discuss is 2D acoustic in the time domain, with finite difference forward modeling. The examples we show refer to the Marmousi model and to a marine field data set.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3