Spectral similarity fault enhancement

Author:

Dewett Dustin T.1,Henza Alissa A.1

Affiliation:

1. BHP Billiton, Petroleum, Houston, Texas, USA..

Abstract

Fault interpretation in seismic data is a critical task that must be completed to thoroughly understand the structural history of the subsurface. The development of similarity-based attributes has allowed geoscientists to effectively filter a seismic data set to highlight discontinuities that are often associated with fault systems. Furthermore, there are numerous workflows that provide, to varying degrees, the ability to enhance this seismic attribute family. We have developed a new method, spectral similarity, to improve the similarity enhancement by integrating spectral decomposition, swarm intelligence, magnitude filtering, and orientated smoothing. In addition, the spectral similarity method has the ability to take any seismic attribute (e.g., similarity, curvature, total energy, coherent energy gradient, reflector rotation, etc.), combine it with the benefits of spectral decomposition, and create an accurate enhancement to similarity attributes. The final result is an increase in the quality of the similarity enhancement over previously used methods, and it can be computed entirely in commercial software packages. Specifically, the spectral similarity method provides a more realistic fault dip, reduction of noise, and removal of the discontinuous “stair-step” pattern common to similarity volumes.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3