Enhanced ant tracking: Using a multispectral seismic attribute workflow to improve 3D fault detection

Author:

Acuña-Uribe Mateo1,Pico-Forero María Camila1,Goyes-Peñafiel Paul2,Mateus Darwin3

Affiliation:

1. Universidad Industrial de Santander, School of Geology, Bucaramanga, Santander, Colombia..

2. Universidad Industrial de Santander, School of Systems Engineering and Informatics, Bucaramanga, Santander, Colombia..

3. Instituto Colombiano del Petróleo – Ecopetrol, Piedecuesta, Colombia..

Abstract

Fault interpretation is a complex task that requires time and effort on behalf of the interpreter. Moreover, it plays a key role during subsurface structural characterization either for hydrocarbon exploration and development or well planning and placement. Seismic attributes are tools that help interpreters identify subsurface characteristics that cannot be observed clearly. Unfortunately, indiscriminate and random seismic attribute use affects the fault interpretation process. We have developed a multispectral seismic attribute workflow composed of dip-azimuth extraction, structural filtering, frequency filtering, detection of amplitude discontinuities, enhancement of amplitude discontinuities, and automatic fault extraction. The result is an enhanced ant-tracking volume in which faults are improved compared to common fault-enhanced workflows that incorporate the ant-tracking algorithm. To prove the effectiveness of the enhanced ant-tracking volume, we have applied this methodology in three seismic volumes with different random noise content and seismic characteristics. The detected and extracted faults are continuous, clean, and accurate. The proposed fault identification workflow reduces the effort and time spent in fault interpretation as a result of the integration and appropriate use of various types of seismic attributes, spectral decomposition, and swarm intelligence.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3