Seismic detection of a hydraulic fracture from shear‐wave VSP data at Lost Hills Field, California

Author:

Meadows Mark A.1,Winterstein Don F.1

Affiliation:

1. Chevron Petroleum Technology Company, 1300 Beach Boulevard, La Habra, CA 90631-6374

Abstract

A shear‐wave (S‐wave) VSP experiment was performed at Lost Hills Field, California, in an attempt to detect hydraulic fractures induced in a nearby well. The hydrofrac well was located between an impulsive, S‐wave source on the surface and a receiver well containing a clamped, three‐component geophone. Both direct and scattered waves were detected immediately after shut‐in, when the hydraulic pumps were shut off and recording started. The scattered energy disappeared within about an hour, which is consistent with other measurements that indicate some degree of fracture closure and leak‐off within that period. Although S‐wave splitting was evident, no change was detected in the fast wave (polarized parallel to the fracture). However, the slow wave (polarized perpendicular to the fracture) did change over a period of about an hour, after which the prehydrofrac wavelet shape was recovered. The fact that only the wave polarized perpendicular to the fracture was affected is a dramatic confirmation of both theoretical predictions and laboratory observations of S‐wave behavior in a fractured medium. Subtracting the prehydrofrac wavelet from the wavelets recorded within the first hour after shut‐in revealed scattered wavelets that were diminished and phase‐rotated versions of the incident (prehydrofrac) wavelet. Arrival times of the direct and scattered waves were matched by ray tracing. We accounted for the scattered‐wave amplitudes by using numerical solutions of S‐wave diffractions off of ribbon‐shaped fractures. Amplitudes derived from full‐wavefield Born scattering, however, did not match recorded amplitudes. The phase of the scattered wavelets was matched very well by Born scattering when the incident wavelet was input, but only for fracture lengths no larger than half those predicted from fracture‐simulator models. These results show that a carefully controlled experiment, combined with accurate modeling, can provide important information about the geometry of induced fractures.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3