A general solution for a spherical conductor in a magnetic dipole field

Author:

Best Melvyn E.1,Shammas Basil R.2

Affiliation:

1. Koninklijke Shell Exploratie er Produktie Laboraturium, The Netherlands, formerly Shell Canada Resources Limited, Box 100, Calgary, Alta. T2P 2H5 Canada

2. Shell Canada Resources Limited, Box 100, Calgary, Alta. T2P 2H5 Canada

Abstract

In electromagnetic (EM) prospecting for volcanogenic massive sulfide ore deposits, a significant number of the responses are associated with compact conductors. As a first approximation, these bodies are studied using a conducting sphere model. An exact solution is given for a spherical conductor excited by a magnetic dipole field in free space for arbitrary transmitter‐receiver (T-R) configurations with receiver positions inside or outside the conductor. In this general approach, it is possible to investigate the lateral attenuation of EM systems. In particular, the effects of flight‐line displacement from the center of the spherical conductor on several airborne EM responses are presented. For example, at normal flying heights, the standard Dighem system has a lateral attenuation 50 times larger than the EM-30 system (for a sphere of 100 m radius). Field results from the Clearwater deposit in New Brunswick are compared to the spherical model attenuations for the Dighem, Otter, and F-500 systems. The behavior of the total magnetic fields [Formula: see text] and [Formula: see text] inside the conductor are presented in the form of magnitude and phase contours. The [Formula: see text] amplitude was found to be approximately the same inside and outside the sphere; the [Formula: see text] amplitude, however, differs significantly in these two regions. Observations such as these may provide some guidance in subdividing anomalous inhomogeneities in future numerical modeling.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3