3D controlled-source electromagnetic edge-based finite element modeling of conductive and permeable heterogeneities

Author:

Mukherjee Souvik12,Everett Mark E.12

Affiliation:

1. Texas A&M University, Department of Geology and Geophysics, College Station, Texas, U.S.A., now at shell Exploration and Production Company, Houstan, Texas, U.S.A..

2. Texas A&M University, Department of Geology and Geophysics, College Station, Texas, U.S.A..

Abstract

A new 3D controlled-source electromagnetic finite element (FE) modeling algorithm is presented which is capable of handling local inhomogeneities in the magnetic permeability and electrical conductivity distribution of buried geologic and anthropogenic structures. An ungauged, coupled-potential formulation of the governing electromagnetic vector diffusion and scalar continuity equations is used. The formulation introduces magnetic reluctivity, the inverse of magnetic permeability, to facilitate a separation of secondary and primary potentials. The governing equations are solved using a tetrahedral edge-based FE method. The postprocessing steps to obtain electromagnetic fields are outlined. The code is validated for non-magnetic and permeable conductive structures by comparisons against analytic and previously published numerical solutions. Some limitations of the implementation are explored and directions are proposed for its further development.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3