Data‐driven adaptive decomposition of multicomponent seabed recordings

Author:

Muijs Remco1,Robertsson Johan O. A.2,Holliger Klaus1

Affiliation:

1. Swiss Federal Institute of Technology, Institute of Geophysics, ETH‐Hönggerberg, CH‐8093 Zurich, Switzerland. Emails:

2. WesternGeco Oslo Technology Center, Schlumberger House, Solbråveien 23, P.O. Box 234, N‐1372 Asker, Norway.

Abstract

Dual‐sensor (hydrophone and three‐component geophone) data recorded on the sea floor allow the elastic wavefield to be decomposed into its upgoing and downgoing P‐ and S‐wave components. Most decomposition algorithms require accurate knowledge of the elastic properties of the sea floor in the vicinity of the receivers and properly calibrated sensors, in order for the data to be a faithful vector representation of the ground motion. We present a multistep adaptive decomposition scheme that provides the necessary information directly from the data by imposing constraints on intermediate decomposition results. The proposed scheme requires no a priori information and only a minimal amount of user‐defined input, thus allowing multicomponent data to be decomposed in an automated data‐driven fashion. The performance of the technique is illustrated using seabed data acquired in the North Sea with prototype single sensors (multicomponent geophones individually sampled). Realistic sea floor properties and sensor calibration operators are obtained, and elastic decomposition of the calibrated data generally yields good results. Dominant water‐layer reverberations are successfully attenuated and primary reflections are substantially enhanced in the computed upgoing P‐wave potential just below the sea floor. In contrast, the result for the upgoing S‐wave potential is somewhat less convincing; although the energy of water‐layer multiples is substantially reduced, notable amounts of undesired multiple energy remain in this section after decomposition, particularly at high offsets. These imperfections may point to inaccuracies in the parametrization of the sea floor or remaining inaccuracies in the vector fidelity of the horizontal geophone recordings. Nevertheless, the results obtained with the extended data‐driven decomposition scheme are at least comparable to previously published results.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3