Investigating the stratigraphy of an alluvial aquifer using crosswell seismic traveltime tomography

Author:

Moret Geoff J.12,Knoll Michael D.12,Barrash Warren12,Clement William P.12

Affiliation:

1. Formerly Boise State University, Center for Geophysical Investigation of the Shallow Subsurface, Boise, Idaho 83725; presently Pennsylvania State University, Department of Geosciences, University Park, Pennsylvania 16802..

2. Boise State University, Center for Geophysical Investigation of the Shallow Subsurface, Boise, Idaho 83725..

Abstract

In this study, we investigate the use of crosswell P-wave seismic tomography to obtain spatially extensive information about subsurface sedimentary architecture and heterogeneity in alluvial aquifers. Our field site was a research wellfield in an unconfined aquifer near Boise, Idaho. The aquifer consists of a ∼ 20-m-thick sequence of alluvial cobble-and-sand deposits, which have been subdivided into five stratigraphic units based on neutron porosity logs, grain-size analysis, and radar reflection data. We collected crosswell and borehole-to-surface seismic data in wells [Formula: see text] apart. We carefully considered the impact of well deviation, data quality control, and the choice of inversion parameters. Our linearized inverse routine had a curved-ray forward model and used different grids for forward modeling and inversion. An analysis of the model covariance and resolution matrices showed that the velocity models had an uncertainty of [Formula: see text], a vertical resolution of [Formula: see text], and a horizontal resolution of [Formula: see text]. The velocity in the saturated zone varied between [Formula: see text] and [Formula: see text]. Inclusion of the borehole-to-surface data eliminated the X- shaped pattern that is a common artifact in crosswell tomography, and the increased angular coverage also improved the accuracy of the model near the top of the tomogram. The final velocity model is consistent with previous stratigraphic analyses of the site, although the locations of some of the unit boundaries differ by as much as [Formula: see text] in places. The results of this study demonstrate that seismic tomography can be used to image the sedimentary architecture of unconsolidated alluvial aquifers, even when the lithologic contrasts between units are subtle.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3