3D Reverse-Time Migration Imaging for Multiple Cross-Hole Research and Multiple Sensor Settings of Cross-Hole Seismic Exploration

Author:

Cheng Fei1,Peng Daicheng2ORCID,Yang Sansheng3

Affiliation:

1. Hubei Key Laboratory of Marine Geological Resources, China University of Geosciences, Wuhan 430074, China

2. Key Laboratory of Exploration Technologies for Oil and Gas Resource, Ministry of Education, Yangtze University, Wuhan 430100, China

3. China State Shipbuilding Corporation 722 Research Institute, Wuhan 430205, China

Abstract

The two-dimensional (2D) cross-hole seismic computed tomography (CT) imaging acquisition method has the potential to characterize the target zone optimally compared to surface seismic surveys. It has wide applications in oil and gas exploration, engineering geology, etc. Limited to 2D hole velocity profiling, this method cannot acquire three-dimensional (3D) information on lateral geological structures outside the profile. Additionally, the sensor data received by cross-hole seismic exploration constitute responses from geological bodies in 3D space and are potentially affected by objects outside the well profiles, distorting the imaging results and geological interpretation. This paper proposes a 3D cross-hole acoustic wave reverse-time migration imaging method to capture 3D cross-hole geological structures using sensor settings in multi-cross-hole seismic research. Based on the analysis of resulting 3D cross-hole images under varying sensor settings, optimizing the observation system can aid in the cost-efficient obtainment of the 3D underground structure distribution. To verify this method’s effectiveness on 3D cross-hole structure imaging, numerical simulations were conducted on four typical geological models regarding layers, local high-velocity zones, large dip angles, and faults. The results verify the model’s superiority in providing more reliable and accurate 3D geological information for cross-hole seismic exploration, presenting a theoretical basis for processing and interpreting cross-hole data.

Funder

the National Natural Science Foundation of China

Open Funds for Hubei Key Laboratory of Marine Geological Resources, China University of Geosciences

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3