Simulation of anisotropic wave propagation based upon a spectral element method

Author:

Komatitsch Dimitri1,Barnes Christophe2,Tromp Jeroen1

Affiliation:

1. Harvard University, Department of Earth and Planetary Sciences, 20 Oxford Street, Cambridge, Massachusetts 02138

2. Département des Sciences de la Terre, Université de Cergy‐Pontoise, 8, Le Campus, Ba⁁timent I, F-95031 Cergy‐Pontoise Cedex, France

Abstract

We introduce a numerical approach for modeling elastic wave propagation in 2-D and 3-D fully anisotropic media based upon a spectral element method. The technique solves a weak formulation of the wave equation, which is discretized using a high‐order polynomial representation on a finite element mesh. For isotropic media, the spectral element method is known for its high degree of accuracy, its ability to handle complex model geometries, and its low computational cost. We show that the method can be extended to fully anisotropic media. The mass matrix obtained is diagonal by construction, which leads to a very efficient fully explicit solver. We demonstrate the accuracy of the method by comparing it against a known analytical solution for a 2-D transversely isotropic test case, and by comparing its predictions against those based upon a finite difference method for a 2-D heterogeneous, anisotropic medium. We show its generality and its flexibility by modeling wave propagation in a 3-D transversely isotropic medium with a symmetry axis tilted relative to the axes of the grid.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3