A constrained parametric inversion for velocity analysis based on CFP technology

Author:

Kabir M. M. Nurul1,Verschuur D. J.2

Affiliation:

1. Delft University of Technology, P.O. Box. 5046, 2600 GA Delft, The Netherlands.

2. Delft University of Technology, Centre for Technical Geoscience, Laboratory of Seismics and Acoustics, P.O. Box 5046, 2600 GA Delft, The Netherlands.

Abstract

A method of velocity analysis based on the common focusing point (CFP) method is presented. The two important aspects of the method are the use of the CFP domain and the use of a new parameterization—a vertical velocity gradient to describe the lateral velocity variation within a layer. The layer velocity is defined with only two parameters: an average velocity [Formula: see text]and a vertical velocity gradient (β). Layer velocity parameterization using [Formula: see text] and β assumes that the lithology of the layer is constant and that the overburden and fluid pressure increase linearly with depth. This type of parameterization is suitable for areas with gross changes in lithology (clastic‐carbonate‐salt) and for rock in hydrostatic equilibrium. A layer‐based model is required for these areas. The salt dome data example presented belongs to this type of area, so the layer‐based model with the defined parameterization produced a very good subsurface velocity model. The method is based on the principle of equal traveltime between the focusing operator and the corresponding focus point response. The velocity estimation problem is formulated as a constrained parametric inversion process. The method of perturbation is applied where linear assumptions are made; the velocity inversion, however, is a nonlinear problem, and the model parameter updates are computed iteratively using Newton’s method. The velocity model is built by layers in a top‐down approach, which makes the problem quasi‐linear.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3