2D and 3D prestack seismic data regularization using an accelerated sparse time-invariant Radon transform

Author:

Zhang Ying-Qiang1,Lu Wen-Kai1

Affiliation:

1. Tsinghua University, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, State Key Laboratory of Intelligent Technology and Systems, Easysignal Group, Beijing, China..

Abstract

The time-invariant Radon transform (RT) is commonly used to regularize and interpolate sparsely sampled or irregularly acquired prestack seismic data. The sparseness of the Radon model significantly influences the results of regularization. We have developed an effective and efficient method for the regularization and interpolation of 2D as well as 3D prestack seismic data. We used an accelerated sparse time-invariant RT in the mixed frequency-time domain to improve the performance of RT-based seismic data regularization. This 2D sparse RT incorporated the iterative 2D model shrinkage algorithm instead of the traditional iteratively reweighted least-squares (IRLS) algorithm in the time domain, and we computed the forward and inverse RTs in the frequency domain to solve the sparse inverse problem, which dramatically reduced the computational cost while obtaining a high-resolution result. The 2D synthetic and real data examples revealed that our 2D approach can better interpolate beyond aliasing a 2D prestack seismic record that contains a large gap, compared with the least-squares-based RT and the frequency-domain sparse RT methods. To extend the 2D technique to 3D more efficiently, we first formulate the 3D RT as a problem of solving a special matrix equation. Next, we use the iterative 3D model shrinkage algorithm to obtain a high-resolution 3D Radon model. The proposed 3D sparse RT method can be applied in the regularization of 3D prestack gathers, such as in the cable interpolation in a 3D marine survey. We achieved robustness and effectiveness with our 3D approach with successful applications to 3D synthetic and real data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3