Affiliation:
1. Stanford University, Department of Geophysics, Stanford, California, USA..
Abstract
Reduced amplitude and distorted dispersion of seismic waves caused by attenuation, especially strong attenuation, always degrades the resolution of migrated images. To improve image resolution, we evaluated a methodology of compensating for attenuation ([Formula: see text]) effects in reverse-time migration ([Formula: see text]-RTM). The [Formula: see text]-RTM approach worked by mitigating the amplitude attenuation and phase dispersion effects in source and receiver wavefields. Source and receiver wavefields were extrapolated using a previously published time-domain viscoacoustic wave equation that offered separated amplitude attenuation and phase dispersion operators. In our [Formula: see text]-RTM implementation, therefore, attenuation- and dispersion-compensated operators were constructed by reversing the sign of attenuation operator and leaving the sign of dispersion operator unchanged, respectively. Further, we designed a low-pass filter for attenuation and dispersion operators to stabilize the compensating procedure. Finally, we tested the [Formula: see text]-RTM approach on a simple layer model and the more realistic BP gas chimney model. Numerical results demonstrated that the [Formula: see text]-RTM approach produced higher resolution images with improved amplitude and phase compared to the noncompensated RTM, particularly beneath high-attenuation zones.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
271 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献