Plane‐wave Q deconvolution

Author:

Bickel S. H.1,Natarajan R. R.1

Affiliation:

1. ARCO Oil and Gas Company, Exploration and Production Research, P. O. Box 2819, Dallas, TX 75221

Abstract

Often the information content of measured signals from distance sources is hidden, because the signal distorts, weakens, and loses resolution as it propagates. For seismic energy traveling in the earth, these propagation effects can be approximated by the constant (frequency‐independent) Q model for attenuation and dispersion. For a propagating plane wave, this model leads to a spatial attenuation factor that is an unbounded function of frequency. Consequently, the broadband inverse of the constant-Q filter does not exist. For a fixed distance between the source and receiver the effects of the propagation path can be deconvolved (removed) within the seismic band by reversing the propagation of the plane wave. This propagation reversal is done by a time reversal with Q replaced by —Q, thereby changing absorption to gain in the complex wavenumber. Normally, measured seismic traces contain returns from a variety of depths. The interference of waves with different amounts of attenuation complicates the inversion process. From a superposition of plane waves with reversed propagation, a general inverse to an attenuation earth filter is proposed. To account for the increased attenuation with depth, the plane‐wave inverse filter is now time‐varying. This time‐varying inverse filter has a simple Fourier integral representation where the wavenumber is complex, and the direction of propagation is chosen such that the wave is growing rather than attenuating with distance. To control the wavelet side lobes a frequency‐domain window function (Hanning window) is applied to the trace. This two‐step plane‐wave deconvolution scheme was demonstrated to be superior to conventional deconvolution procedures. Tests with field data indicate the method is effective in removing attenuation effects from both VSP (Vertical Seismic Profile) and surface measurements. Phase distortions are eliminated and interference between events is reduced within the seismic band. This inverse is nearly exact for events where the time‐bandwidth (propagation time‐signal bandwidth) product is less than the effective Q. For depths where the time‐bandwidth product is greater than [Formula: see text] large wavelet side lobes appear. The wavelet side lobes can be partially suppressed by tapering the edges of the spectrum. However, the large side lobes of wavelets from shallow reflectors limit the bandwidth that can be recovered from the deeper events to aproximately [Formula: see text], where t is the propagation time to the event. Advances in the inversion algorithm (e.g., a Wiener filter could be used in place of the Hanning window to control side lobes) could probably improve upon our results, but in most cases even a small amount of measurement noise limits the reflection sequences to time‐bandwidth products that are less than twice the effective Q.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 188 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3