What is the depth of investigation of a resistivity measurement?

Author:

Gómez-Treviño Enrique1,Esparza Francisco J.1

Affiliation:

1. CICESE, División de Ciencias de la Tierra, Ensenada, Baja California, Mexico..

Abstract

Ever since the first computation of resistivity sounding curves, there has been the impression that somehow they are averages of the vertical resistivity profile. This prompted the idea to represent apparent resistivity as an integral over depth and to define depth of investigation using the integrands of the integrals as elementary contributions. However, elementary contributions for a boundary value problem cannot be uniquely defined and are not physically meaningful. Many practical applications that have been derived from this approach might be at stake regarding their theoretical basis. On the other hand, a sensitivity function has a definite physical meaning and it is uniquely defined, but it offers a different picture for a layered earth. The concept of elementary contributions must then be abandoned as not real, as some respected scholars have suggested, or it must be put on solid ground if we are going to continue using it. Our claim is that any definition of elementary contributions must comply with the concept of sensitivity; otherwise, it must be discarded not because it might be proved wrong, but because we cannot have multiple functions pretending to represent the depth of investigation of a resistivity measurement. We determined that both concepts can be unified and reconciled into a single formulation. That is, one and the same function of depth can be interpreted as an elementary contribution or as the local sensitivity. To further support the effectiveness of the concept, we applied it beyond its traditional application to homogeneous media. We developed an approximate formula for computing apparent resistivity as a weighted average of the vertical resistivity profile. The formula works in the way of a toy model; it is an approximation, but it provides immediate insights into how a vertical resistivity profile relates to its sounding curve.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3