Splitting marine controlled-source electromagnetic responses into sea and subseafloor contributions: Grounding the air wave

Author:

Calderón-Moctezuma Armando1ORCID,Gómez-Treviño Enrique1,Gallardo Luis A.1ORCID

Affiliation:

1. CICESE, División de Ciencias de la Tierra, Ensenada, Baja California, México..

Abstract

We have found how the effects of the air wave in marine controlled-source electromagnetic (CSEM) methods gradually vanish in the sea for shallow waters, and how at the same time they gradually grow below the seafloor, in an effort to comprehend existing detectability definitions. The transition from sea to land is smooth because the sea becomes a thin conductive layer when the water depth is smaller than the skin depth in the sea. We consider the problem of detecting resistive layers at depth associated with hydrocarbon reservoirs, particularly in shallow-water explorations and, specifically, on how the air wave affects detection. Our analysis is based on an integral representation of the electric field in terms of its sensitivity to changes in the electrical conductivity of a 1D profile. Two-dimensional images of the integrands are obtained by plotting the integrand as a function of depth for different offsets. Results include the expected growth of the inhibiting effect of the sea as the water depths decrease. However, we also find that this happens up to a point and that from then on its effect decreases to zero. Regarding the resistive layer at depth, its importance grows to a constant as the water depth decreases to zero. As a function of offsets, there appear first the direct current effects. The induction zone is next and is dominated by contributions from the underlying formations. The third zone, which corresponds to the air wave, is largely dominated by contributions from the sea. The fourth and last zone is the plane-wave asymptote. All four classical zones identified in marine CSEM are also present in land CSEM.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3