Staining algorithm for seismic modeling and migration

Author:

Chen Bo1,Jia Xiaofeng1

Affiliation:

1. University of Science and Technology of China, School of Earth and Space Sciences, Laboratory of Seismology and Physics of Earth’s Interior, Anhui, China..

Abstract

In seismic migration, some structures such as those in subsalt shadow zones are not imaged well. The signal in these areas may be even weaker than the artifacts elsewhere. We evaluated a method to significantly improve the signal-to-noise ratio (S/N) in poorly illuminated areas of the model. We constructed a “phantom” wavefield: an extension of the wavefield to the complex domain. The imaginary wavefield was synchronized with the real wavefield, but it contained only the events relevant to a target region of the model, which was specified using a staining algorithm. The real wavefield interacted with the entire model. However, all structures except for the target were transparent to the imaginary wavefield, which is excited only when the real wavefront arrives at the target structure. The real and the imaginary source wavefields were crosscorrelated with the regular receiver wavefield. The results were revealed in two images: the conventional reverse time migration image and an image of the target region only. Synthetic experiments showed that the S/N of the target structures was improved significantly, with other structures effectively muted.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3