An algorithm adapting encoded simultaneous-source full-waveform inversion to marine-streamer acquisition data

Author:

Son Woohyun1,Pyun Sukjoon2,Shin Changsoo3,Kim Han-Joon1

Affiliation:

1. Korea Institute of Ocean Science and Technology, Korean Seas Geosystem Research Unit, Ansan, Republic of Korea..

2. Inha University, Department of Energy Resources Engineering, Incheon, Republic of Korea..

3. Seoul National University, Department of Energy Resources Engineering, Seoul, Republic of Korea..

Abstract

In recent years, the encoded simultaneous-source full-waveform inversion (ESSFWI) algorithm, which can reduce the computational cost of the individual-source full-waveform inversion (FWI), has been studied by many researchers. Although the ESSFWI technique can be successfully applied to fixed-spread acquisition data, the application of this technique to marine-streamer data is difficult because of the acquisition geometry. The difference in the acquisition geometry between the observed and modeled data produces missing trace parts in a stacked seismogram and unwanted events in the residual seismogram. To avoid these unwanted residuals, the correlation-based ESSFWI technique has been suggested by several researchers. However, the correlation-based approach unpredictably modifies the residual seismograms, which may result in distortion of the inverted velocity model. We developed an alternative approach to properly cope with the acquisition geometry problem. Our algorithm modified the offset-limited observed data to full-offset data by combining the original observed data with the modeled data. This modification led to an undistorted residual seismogram for the simultaneous multiple shot data. However, if we applied this modification process at every iteration of the inversion, the computational cost increased. To accelerate our ESSFWI algorithm, we proposed a strategy that modified the observed data at the iterations corresponding to the square numbers. Through the numerical examples, we discovered that our ESSFWI strategy better described the velocity structure of Marmousi-2 model than the correlation-based approach. Based on the comparison of computational speed-up for several strategies, we also confirmed that our ESSFWI algorithm using square numbers was a reasonable strategy. An example using real data found that our algorithm is slightly sensitive to noise, but we could minimize this sensitivity to noise by using a reasonable strategy to reduce the problem of missing traces. As a result, we could perform an effective ESSFWI even for marine-streamer acquisitions.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3