Affiliation:
1. Colorado School of Mines, Center for Wave Phenomena, Dept. of Geophysics, 13th and Maple, Golden, Colorado 80401
Abstract
Transverse isotropy with a tilted symmetry axis (TTI media) has been recognized as a common feature of shale formations in overthrust areas, such as the Canadian Foothills. Since TTI layers cause serious problems in conventional imaging, it is important to be able to reconstruct the velocity model suitable for anisotropic depth migration. Here, we discuss the results of anisotropic parameter estimation on a physical‐modeling data set. The model represents a simplified version of a typical overthrust section from the Alberta Foothills, with a horizontal reflector overlaid by a bending transversely isotropic layer. Assuming that the TTI layer is homogeneous and the symmetry axis stays perpendicular to its boundaries, we invert P-wave normal‐moveout (NMO) velocities and zero‐offset traveltimes for the symmetry‐direction velocity V0and the anisotropic parameters ε and δ. The coefficient ε is obtained using the traveltimes of a wave that crosses a dipping TTI block and reflects from the bottom of the model. The inversion for ε is based on analytic expressions for NMO velocity in media with intermediate dipping interfaces. Our estimates of both anisotropic coefficients are close to their actual values. The errors in the inversion, which are associated primarily with the uncertainties in picking the NMO velocities and traveltimes, can be reduced by a straighforward modification of the acquisition geometry. It should be emphasized that the moveout inversion also gives an accurate estimate of the thickness of the TTI layer, thus reconstructing the correct depth scale of the section. Although the physical model used here was relatively simple, our results demonstrate the principal feasibility of anisotropic velocity analysis and imaging in overthrust areas. The main problems in anisotropic processing for TTI models are likely to be caused by the lateral variation of the velocity field and overall structural complexity.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献