Estimating tilted fracture weaknesses from azimuthal differences in seismic amplitude data

Author:

Chen Huaizhen1ORCID,Chen Tiansheng2,Innanen Kristopher A.3ORCID

Affiliation:

1. Tongji University, State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Institute for Advanced Study, Shanghai 200092, China and University of Calgary, Department of Geoscience, Calgary, Alberta, Canada..

2. Sinopec Key Lab of Multi-Component Seismic Technology, SINOPEC PEPRIS, Beijing 100083, China..

3. University of Calgary, Department of Geoscience, Calgary, Alberta, Canada..

Abstract

Tilted transverse isotropy (TTI) provides a useful model for the elastic response of a medium containing aligned fractures with a symmetry axis oriented obliquely in the vertical and horizontal coordinate directions. Robust methods for determining the TTI properties of a medium from seismic observations to characterize fractures are sought. Azimuthal differencing of seismic amplitude data produces quantities that are particularly sensitive to TTI properties. Based on the linear slip fracture model, we express the TTI stiffness matrix in terms of the normal and tangential fracture weaknesses. Perturbing stiffness parameters to simulate an interface separating an isotropic medium and a TTI medium, we derive a linearized P-to-P reflection coefficient expression in which the influence of tilt angle and fracture weaknesses separately emerge. We formulate a Bayesian inversion approach in which amplitude differences between seismic data along two azimuths, interpreted in terms of the reflection coefficient approximation, are used to determine fracture weaknesses and tilt angle. Tests with simulated data confirm that the unknown parameter vector involving fracture weakness and tilted fracture weaknesses is stably estimated from seismic data containing a moderate degree of additive Gaussian noise. The inversion approach is applied to a field surface seismic data acquired over a fractured reservoir; from it, interpretable tilted fracture weaknesses, consistent with expected reservoir geology, are obtained. We determine that our inversion approach and the established inversion workflow can produce the properties of systems of tilted fractures stably using azimuthal seismic amplitude differences, which may add important information for characterization of fractured reservoirs.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3