Reservoir properties prediction integrating controlled-source electromagnetic, prestack seismic, and well-log data using a rock-physics framework: Case study in the Hoop Area, Barents Sea, Norway

Author:

Alvarez Pedro1,Alvarez Amanda1,MacGregor Lucy1,Bolivar Francisco1,Keirstead Robert1,Martin Thomas1

Affiliation:

1. Rock Solid Images, Houston, Texas, USA..

Abstract

We have developed an example from the Hoop Area of the Barents Sea showing a sequential quantitative integration approach to integrate seismic and controlled-source electromagnetic (CSEM) attributes using a rock-physics framework. The example illustrates a workflow to address the challenges of multiphysics and multiscale data integration for reservoir characterization purposes. A data set consisting of 2D GeoStreamer seismic and towed streamer electromagnetic data that were acquired concurrently in 2015 by PGS provide the surface geophysical measurements that we used. Two wells in the area — Wisting Central (7324/8-1) and Wisting Alternative (7324/7-1S) — provide calibration for the rock-physics modeling and the quantitative integrated analysis. In the first stage of the analysis, we invert prestack seismic and CSEM data separately for impedance and anisotropic resistivity, respectively. We then apply the multi-attribute rotation scheme (MARS) to estimate rock properties from seismic data. This analysis verified that the seismic data alone cannot distinguish between commercial and noncommercial hydrocarbon saturation. Therefore, in the final stage of the analysis, we invert the seismic and CSEM-derived properties within a rock-physics framework. The inclusion of the CSEM-derived resistivity information within the inversion approach allows for the separation of these two possible scenarios. Results reveal excellent correlation with known well outcomes. The integration of seismic, CSEM, and well data predicts very high hydrocarbon saturations at Wisting Central and no significant saturation at Wisting Alternative, consistent with the findings of each well. Two further wells were drilled in the area and used as blind tests in this case: The slightly lower saturation predicted at Hanssen (7324/7-2) is related to 3D effects in the CSEM data, but the positive outcome of the well is correctly predicted. At Bjaaland (7324/8-2), although the seismic indications are good, the integrated interpretation result predicts correctly that this well was unsuccessful.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3