Utilizing UAV-based hyperspectral imaging to detect surficial explosive ordnance

Author:

Tuohy Madison1,Baur Jasper23,Steinberg Gabriel3,Pirro Jalissa1,Mitchell Taylor4,Nikulin Alex135,Frucci John4,de Smet Timothy S.135

Affiliation:

1. Binghamton University, Binghamton, New York, USA..

2. Columbia University, Lamont-Doherty Earth Observatory, New York, New York, USA..

3. Demining Research Community, Binhamton, New York, USA..

4. Oklahoma State University, Stillwater, Oklahoma, USA..

5. Aletair LLC, Binghamton, New York, USA..

Abstract

Across postconflict regions of the world, explosive ordnance (EO), which includes remnant antipersonnel land mines, antivehicle/tank mines, unexploded cluster munitions, improvised explosive devices, and explosive remnants of war (ERW) such as unexploded ordnance and abandoned explosive ordnance, remains a critical humanitarian concern. Clearance and land release efforts anchored on manual geophysical detection and mechanical probing methods remain painstakingly slow, expensive, and dangerous to operators. As a result, postconflict regions impacted by EO contamination significantly lag in social and economic development. Developing, calibrating, and field testing more efficient detection methods for surficial EO is a crucial task. Unpiloted aerial systems featuring advanced remote sensing capabilities are a key technology that may allow the tide to turn in the EO crisis. Specifically, recent advances in hardware design have allowed for effective deployment of small, light, and less power consuming hyperspectral imaging (HSI) systems from small unpiloted aerial vehicles (UAVs). Our proof-of-concept study employs UAV-based HSI to deliver a safer, faster, and more cost-efficient method of surface land mine and ERW detection compared to current ground-based detection methods. Our results indicate that analysis of HSI data sets can produce spectral profiles and derivative data products to distinguish multiple ERW and mine types in a variety of host environments.

Funder

Corning Incorporated Foundation

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3