Applying Deep Learning to Automate UAV-Based Detection of Scatterable Landmines

Author:

Baur Jasper,Steinberg Gabriel,Nikulin Alex,Chiu Kenneth,de Smet Timothy S.

Abstract

Recent advances in unmanned-aerial-vehicle- (UAV-) based remote sensing utilizing lightweight multispectral and thermal infrared sensors allow for rapid wide-area landmine contamination detection and mapping surveys. We present results of a study focused on developing and testing an automated technique of remote landmine detection and identification of scatterable antipersonnel landmines in wide-area surveys. Our methodology is calibrated for the detection of scatterable plastic landmines which utilize a liquid explosive encapsulated in a polyethylene or plastic body in their design. We base our findings on analysis of multispectral and thermal datasets collected by an automated UAV-survey system featuring scattered PFM-1-type landmines as test objects and present results of an effort to automate landmine detection, relying on supervised learning algorithms using a Faster Regional-Convolutional Neural Network (Faster R-CNN). The RGB visible light Faster R-CNN demo yielded a 99.3% testing accuracy for a partially withheld testing set and 71.5% testing accuracy for a completely withheld testing set. Across multiple test environments, using centimeter scale accurate georeferenced datasets paired with Faster R-CNN, allowed for accurate automated detection of test PFM-1 landmines. This method can be calibrated to other types of scatterable antipersonnel mines in future trials to aid humanitarian demining initiatives. With millions of remnant PFM-1 and similar scatterable plastic mines across post-conflict regions and considerable stockpiles of these landmines posing long-term humanitarian and economic threats to impacted communities, our methodology could considerably aid in efforts to demine impacted regions.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference62 articles.

1. Landmines: The human cost;Rosenfeld;ADF Health J. Aust. Def. Force Health Serv.,2000

2. Ground penetrating radar and imaging metal detector for antipersonnel mine detection

3. Literature review on landmines and detection methods;Bello;Front. Sci.,2013

4. New Technological Approaches to Humanitarian Demining;Horowitz,1996

5. Landmines in Russia and the former Soviet Union: A lethal epidemic;Dolgov;Med. Glob. Surviv.,2001

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3