A Multispectral Automated Transfer Technique (MATT) for machine-driven image labeling utilizing the Segment Anything Model (SAM)

Author:

Gallagher James1,Gogia Aryav1,Oughton Edward1

Affiliation:

1. George Mason University

Abstract

Abstract

Segment Anything Model (SAM) is drastically accelerating the speed and accuracy of automatically segmenting and labeling large Red-Green-Blue (RGB) imagery datasets. However, SAM is unable to segment and label images outside of the visible light spectrum, for example, for multispectral or hyperspectral imagery. Therefore, this paper outlines a method we call the Multispectral Automated Transfer Technique (MATT). By transposing SAM segmentation masks from RGB images we can automatically segment and label multispectral imagery with high precision and efficiency. For example, the results demonstrate that segmenting and labeling a 2,400-image dataset utilizing MATT achieves a time reduction of 87.8% in developing a trained model, reducing roughly 20 hours of manual labeling, to only 2.4 hours. This efficiency gain is associated with only a 6.7% decrease in overall mean average precision (mAP) when training multispectral models via MATT, compared to a manually labeled dataset. We consider this an acceptable level of precision loss when considering the time saved during training, especially for rapidly prototyping experimental modeling methods. This research greatly contributes to the study of multispectral object detection by providing a novel and open-source method to rapidly segment, label, and train multispectral object detection models with minimal human interaction. Future research needs to focus on applying these methods to (i) space-based multispectral, and (ii) drone-based hyperspectral imagery.

Publisher

Research Square Platform LLC

Reference83 articles.

1. Xess, M., Agnes, S.A.: Analysis of Image Segmentation Methods Based on Performance Evaluation Parameters, (2014)

2. Saini, S., Arora, K.: A Study Analysis on the Different Image Segmentation Techniques, (2014)

3. Lifelong machine learning: a paradigm for continuous learning;Liu B;Front. Comput. Sci.

4. Oracle or Teacher? A Systematic Overview of Research on Interactive Labeling for Machine Learning;Knaeble M,2020

5. A systematic literature review on object detection using near infrared and thermal images;Bustos N;Neurocomputing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3