Streaming seismic attributes

Author:

Geng Zhicheng1ORCID,Fomel Sergey2ORCID,Liu Yang3ORCID,Wang Qinghan3,Zheng Zhisheng3ORCID,Chen Yangkang2ORCID

Affiliation:

1. The University of Texas at Austin, John A. and Katherine G. Jackson School of Geosciences, Bureau of Economic Geology, Austin, Texas, USA. (corresponding author)

2. The University of Texas at Austin, John A. and Katherine G. Jackson School of Geosciences, Bureau of Economic Geology, Austin, Texas, USA.

3. Jilin University, College of Geo-exploration Science and Technology, Jilin, China.

Abstract

Local seismic attributes play an important role in seismic processing and interpretation. However, the iterative regularized inversion required by the calculation of local seismic attributes makes it prohibitively expensive for real-time processing tasks. In this paper, we present an efficient method for estimating local seismic attributes, such as local frequency and local spectrum, using streaming computation. In our approach, the local attributes can be computed by updating the previously calculated attribute value using one new data point at a time, making it unnecessary to conduct the iterative inversion and thus significantly speeding up the computation for online usage. We apply our method to synthetic and field data to demonstrate its efficiency and effectiveness in accurately characterizing nonstationary seismic signals.

Funder

Texas Consortium for Computational Seismology

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Streaming prediction-error filters;GEOPHYSICS;2024-07-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3