Reply to the Discussion

Author:

Alkhimenkov Yury1ORCID

Affiliation:

1. Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, Massachusetts, USA and Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia. (corresponding author)

Abstract

Gassmann’s equations have been known for several decades and are widely used in geophysics. These equations are treated as exact if all the assumptions used in their derivation are fulfilled. However, a recent theoretical study claimed that Gassmann’s equations contain an error. Shortly after that, a 3D numerical calculation was performed on a simple pore geometry that verifies the validity of Gassmann’s equations. This pore geometry was simpler than those in real rocks but arbitrary. Furthermore, the pore geometry that was used did not contain any special features (among all possible geometries) that were tailored to make it consistent with Gassmann’s equations. In other recent studies, I also performed numerical calculations on several other more complex pore geometries that supported the validity of Gassmann’s equations. To further support the validity of these equations, I provide here one more convergence study using a more realistic geometry of the pore space. Given that there are several studies that rederive Gassmann’s equations using different methods and numerical studies that verify them for different pore geometries, it can be concluded that Gassmann’s equations can be used in geophysics without concern if their assumptions are fulfilled. MATLAB routines to reproduce the presented results are provided.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3