High-resolution water-saturation prediction using geostatistical inversion and neural network methods

Author:

Mohamed Islam A.1,Hemdan Mahmoud1,Hosny Ahmed1,Rashidy Mohamed1

Affiliation:

1. RASHPETCO, Cairo, Egypt..

Abstract

One of the main challenges that we face is the accurate prediction of pore-fluid properties with the highest possible resolution. The seismic resolution is the most limiting factor, especially in our case, in which the main reservoirs are deepwater turbidite channels and their thin beds typically fall below the seismic tuning thickness. Therefore, we designed a new workflow that combines the geostatistical inversion and the neural network analysis with the aim of predicting a 3D high-resolution water saturation (sampled every 1 ms), overcoming the limitation of seismic detectability and providing better reservoir characterization. The power of the geostatistical inversion is that it provides multiple model realizations, and each realization honors the well data (statistical information and logs) and the seismic data. These realizations are more reliable and high-resolution versions of the elastic parameters. On the other hand, the main advantage of the neural network is that it establishes a stable nonlinear link between the input seismic and inversion results and the target water saturation. The available data set for this study includes three angle stacks and seven wells from Scarab field, offshore Nile Delta. The resulted high-resolution saturation volume was tested using blind-well analysis and revisit post the drilling of a new well later on. It gave spectacular results in both cases. The normalized correlations between the predicted saturation volume and the real saturation logs are 0.87 and 0.89, respectively. The results prove the validity of the workflow to accurately predict water saturation with a higher resolution than ever before.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Reference21 articles.

1. Geostatistical inversion for 3D confidence evaluation of facies prediction: A Gulf of Guinea example

2. Detailed seismic lithofluid distribution using Bayesian stochastic inversion for a thinly bedded reservoir: A case study over Huntington UK Central North Sea

3. Bayesian linearized AVO inversion

4. Cozzi, A., A. Cascone, L. Bertelli, F. Bertello, S. Brandolese, M. Minervini, P. Ronchi, R. Ruspi, and H. Harby, 2018, Zohr giant gas discovery: A paradigm shift in Nile Delta and East Mediterranean exploration: Discovery Thinking Forum AAPG/SEG International Conference and Exhibition.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3