A Knowledge-embedded Close-looped Deep Learning Framework for Intelligent Inversion of Multi-solution Problems

Author:

Zhang Fanchang1,Zhu Lei1,Xu Xunyong2

Affiliation:

1. China University of Petroleum (East China), National Key Laboratory of Deep Oil and Gas, Qingdao, China..

2. PetroChina Tarim Oilfield Company, Xinjiang, China..

Abstract

Deep learning is prevalent in many fields and attempts have been made to use it in non-bidirectional mapping problems, such as seismic inversion. These non-bidirectional mapping problems have two special issues, that is, insufficient labels and uncertainty of solution. Therefore, current deep learning structures are not suitable for handling this kind of problem. A distinctive knowledge embedded close-looped (KECL) deep learning framework is proposed, tuned to the characteristic of seismic inverse problem. The KECL deep learning framework is composed of a reservoir parameter generator (RPG) and a reservoir parameter updater (RPU). The former half loop is RPG, which takes seismic data as input to generate the initial reservoir parameters. The latter loop is RPU, which takes the initial parameters as input to output synthetic seismic data. Through the training by well data, the difference between field seismic data and synthetic seismic data modelled by the RPU is used to optimize the RPG and RPU. In this deep learning framework, knowledge of the Robinson convolutional model is embedded to address the problem of insufficient labels. Furthermore, semi-supervised learning is used as prior information to reduce the uncertainty of solution. After training, with the help of prior geological information data, the RPU is used to update the initial reservoir parameters generated by RPG for final reservoir parameter inversion. Numerical models and field data are used to test the feasibility of the proposed deep learning framework. We found that intelligent inversion results using data from one well to train the KECL network are consistent with results using multiple well data. Experiments demonstrate that it is adapted to situations in which insufficient well data are available and is able to achieve reliable intelligent inversion.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Seismic Magnitude Forecasting through Machine Learning Paradigms: A Confluence of Predictive Models;International Journal of Innovative Science and Research Technology (IJISRT);2024-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3