Unsupervised seismic facies using Gaussian mixture models

Author:

Wallet Bradley C.1,Hardisty Robert2

Affiliation:

1. Aramco Services Company, Aramco Research Center — Houston, 16300 Park Row Drive, Houston, Texas 77084, USA.(corresponding author).

2. University of Oklahoma, ConocoPhillips School of Geology and Geophysics, 100 East Boyd Street Suite 710, Norman, Oklahoma 73019, USA..

Abstract

As the use of seismic attributes becomes more widespread, multivariate seismic analysis has become more commonplace for seismic facies analysis. Unsupervised machine-learning techniques provide methods of automatically finding patterns in data with minimal user interaction. When using unsupervised machine-learning techniques, such as [Formula: see text]-means or Kohonen self-organizing maps (SOMs), the number of clusters can often be ambiguously defined and there is no measure of how confident the algorithm is in the classification of data vectors. The model-based probabilistic formulation of Gaussian mixture models (GMMs) allows for the number and shape of clusters to be determined in a more objective manner using a Bayesian framework that considers a model’s likelihood and complexity. Furthermore, the development of alternative expectation-maximization (EM) algorithms has allowed GMMs to be more tailored to unsupervised seismic facies analysis. The classification EM algorithm classifies data vectors according to their posterior probabilities that provide a measurement of uncertainty and ambiguity (often called a soft classification). The neighborhood EM (NEM) algorithm allows for spatial correlations to be considered to make classification volumes more realistic by enforcing spatial continuity. Corendering the classification with the uncertainty and ambiguity measurements produces an intuitive map of unsupervised seismic facies. We apply a model-based classification approach using GMMs to a turbidite system in Canterbury Basin, New Zealand, to clarify results from an initial SOM and highlight areas of uncertainty and ambiguity. Special focus on a channel feature in the turbidite system using an NEM algorithm shows it to be more realistic by considering spatial correlations within the data.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Reference35 articles.

1. Akaike, H., 1973, Information theory and an extension of the maximum likelihood principle: 2nd International Symposium on Information Theory, 267–281.

2. Clustering of Spatial Data by the EM Algorithm

3. Adaptive Control Processes

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3