An adaptive finite‐difference method for traveltimes and amplitudes

Author:

Qian Jianliang1,Symes William W.2

Affiliation:

1. Formerly Rice University, The Rice Inversion Project, Department of Computational and Applied Mathematics, Houston, Texas; presently University of Minnesota, Institute for Mathematics and Its Applications, 400 Lind Hall, 207 Church Street SE, Minneapolis, Minnesota 55455‐0436.

2. Rice University, The Rice Inversion Project, Department of Computational and Applied Mathematics, Houston, Texas 77251‐1892.

Abstract

The point‐source traveltime field has an upwind singularity at the source point. Consequently, all formally high‐order, finite‐difference eikonal solvers exhibit first‐order convergence and relatively large errors. Adaptive upwind finite‐difference methods based on high‐order Weighted Essentially NonOscillatory (WENO) Runge‐Kutta difference schemes for the paraxial eikonal equation overcome this difficulty. The method controls error by automatic grid refinement and coarsening based on a posteriori error estimation. It achieves prescribed accuracy at a far lower cost than does the fixed‐grid method. Moreover, the achieved high accuracy of traveltimes yields reliable estimates of auxiliary quantities such as take‐off angles and geometric spreading factors.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference32 articles.

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3