Adjoint-state traveltime tomography for azimuthally anisotropic media in spherical coordinates

Author:

Chen Jing1ORCID,Chen Guoxu2ORCID,Nagaso Masaru1,Tong Ping134ORCID

Affiliation:

1. Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University , 637371, Singapore

2. Department of Mathematical Sciences, Tsinghua University , Beijing 100084, China

3. Earth Observatory of Singapore, Nanyang Technological University , 639798, Singapore

4. Asian School of the Environment, Nanyang Technological University , 639798, Singapore

Abstract

SUMMARYTong has proposed an adjoint-state traveltime tomography method to determine velocity heterogeneity and azimuthal anisotropy. This method, however, ignores the Earth’s curvature when deriving the eikonal equation for azimuthally anisotropic media. Thus, further coordinate transformation or approximation is required to ensure the accuracy of traveltime prediction in large-scale tomography. To address this problem, we derive the eikonal equation for azimuthally anisotropic media in spherical coordinates, which naturally considers the Earth’s curvature. Another key ingredient is the forward modelling algorithm, whose accuracy and efficiency dominate the numerical error and computational cost of the inversion. In this study, we apply a modified fast sweeping method to solve the eikonal equation in spherical coordinates. Two approaches, including the third-order weighted essentially non-oscillatory approximation and multiplicative factorization technique, are applied to improve the accuracy. According to the numerical experiments, this new eikonal solver achieves a second-order accuracy and is about two orders of magnitude more accurate than the commonly used first-order fast sweeping method with similar runtime. Taking advantage of the two improvements, we develop a novel eikonal equation-based adjoint-state traveltime tomography method for azimuthally anisotropic media in spherical coordinates. This method is applicable for large-scale tomography, and its performance is verified by a synthetic checkerboard test and a practical seismic tomographic inversion in central California near Parkfield.

Funder

National Research Foundation Singapore

Singapore Ministry of Education under the Research Centers of Excellence Initiative

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3