Acoustic properties of carbonates: Effects of rock texture and implications for fluid substitution

Author:

Verwer Klaas123,Braaksma Hendrik123,Kenter Jeroen A.123

Affiliation:

1. VU University, Faculty of Earth and Life Sciences, Amsterdam, The Netherlands. .

2. Formerly Université Montpellier, Laboratoire de Tectonophysique, Montpellier, France; presently ExxonMobil Upstream Research Company, Houston, Texas, U.S.A. .

3. Chevron Energy Technology Company, Voorburg, The Netherlands. .

Abstract

More than 250 plugs from outcrops and three nearby boreholes in an undisturbed reef of Miocene (Tortonian) age were quantitatively analyzed for texture, mineralogy, and acoustic properties. We measured the P- and S-waves of carbonate rocks under dry (humidified) and brine-saturated conditions at [Formula: see text] effective pressure with an ultrasonic pulse transmission technique [Formula: see text]. The data set was compared with an extensive database of petrophysical measurements of a variety of rock types encountered in carbonate sedimentary sequences. Two major textural groups were distinguished on the basis of trends in plots of compressional-wave velocity versus Poisson’s ratio (a specific ratio of P-wave over S-wave velocity). In granular rocks, the framework of depositional grains is the main medium for acoustic-wave propagation; in crystalline rocks, this medium is provided by a framework of interlocking crystals formed during diagenesis. Rock textures are connected to primary depositionalparameters and a diagenetic overprint through the specific effects on Poisson’s ratio. Calculating acoustic velocities using Gassmann fluid substitution modeling approximates measured saturated velocities for 55% of the samples (3% error tolerance); however, it shows considerable errors because shear modulus changes with saturation. Introducing brine into the pore space may decrease the shear modulus of the rock by approximately [Formula: see text] or, alternatively, increase it by approximately [Formula: see text]. This change in shear modulus is coupled with the texture of the rock. In granular carbonates, the shear modulus decreases; in crystalline and cemented carbonates, it increases with saturation. The results demonstrate the intimate relationship between elastic behavior and the depositional and diagenetic properties of carbonate sedimentary rocks. The results potentially allow the direct extraction of granular and crystalline rock texture from acoustic data alone and may help predict rock types from seismic data and in wells.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3