1. Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, 2015, TensorFlow: Large-scale machine learning on heterogeneous systems: https://arxiv.org/abs/1603.04467, accessed 16 March 2016.
2. Akazawa, T., 2004, A technique for automatic detection of onset time of P- and S-phases in strong motion records: Proceedings of the 13th World Conference on Earthquake Engineering.
3. Automatic Microseismic Event Detection Using Deep Learning: a Classification is Detection Method
4. Joint location and source mechanism inversion of microseismic events: benchmarking on seismicity induced by hydraulic fracturing
5. Machine learning for data-driven discovery in solid Earth geoscience