A one-step Bayesian inversion framework for 3D reservoir characterization based on a Gaussian mixture model — A Norwegian Sea demonstration

Author:

Fjeldstad Torstein1ORCID,Avseth Per2ORCID,Omre Henning1

Affiliation:

1. Norwegian University of Science and Technology, Department of Mathematical Sciences, Trondheim 7491, Norway.(corresponding author); .

2. Norwegian University of Science and Technology, Department of Geoscience and Petroleum, Trondheim 7491, Norway..

Abstract

We have developed a one-step approach for Bayesian prediction and uncertainty quantification of lithology/fluid classes, petrophysical properties, and elastic attributes conditional on prestack 3D seismic amplitude-variation-with-offset data. A 3D Markov random field prior model is assumed for the lithology/fluid classes to ensure spatially coupled lithology/fluid class predictions in the lateral and vertical directions. Conditional on the lithology/fluid classes, we consider Gauss-linear petrophysical and rock-physics models including depth trends. Then, the marginal prior models for the petrophysical properties and elastic attributes are multivariate Gaussian mixture models. The likelihood model is assumed to be Gauss-linear to allow for analytic computation. A recursive algorithm that translates the Gibbs formulation of the Markov random field into a set of vertical Markov chains is proposed. This algorithm provides a proposal density in a Markov chain Monte Carlo algorithm such that efficient simulation from the posterior model of interest in three dimensions is feasible. The model is demonstrated on real data from a Norwegian Sea gas reservoir. We evaluate the model at the location of a blind well, and we compare results from the proposed model with results from a set of 1D models in which each vertical trace is inverted independently. At the blind well location, we obtain at most a 60% reduction in the root-mean-square error for the proposed 3D model compared to the model without lateral spatial coupling.

Funder

Norges Forskningsråd

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3