Machine-learning-based data recovery and its contribution to seismic acquisition: Simultaneous application of deblending, trace reconstruction, and low-frequency extrapolation

Author:

Nakayama Shotaro1ORCID,Blacquière Gerrit2ORCID

Affiliation:

1. INPEX Corporation, Akasaka Biz Tower 5-3-1, Akasaka, Minato-ku, Tokyo 107-6332, Japan and Delft University of Technology, Building 23, Stevinweg 1, 2628 CN, Delft, the Netherlands.(corresponding author).

2. Delft University of Technology, Building 23, Stevinweg 1, 2628 CN, Delft, the Netherlands..

Abstract

Acquisition of incomplete data, i.e., blended, sparsely sampled, and narrowband data, allows for cost-effective and efficient field seismic operations. This strategy becomes technically acceptable, provided that a satisfactory recovery of the complete data, i.e., deblended, well-sampled, and broadband data, is attainable. Hence, we explore a machine-learning approach that simultaneously performs suppression of blending noise, reconstruction of missing traces, and extrapolation of low frequencies. We have applied a deep convolutional neural network in the framework of supervised learning in which we train a network using pairs of incomplete-complete data sets. Incomplete data, which are never used for training and use different subsurface properties and acquisition scenarios, are subsequently fed into the trained network to predict complete data. We develop matrix representations indicating the contributions of different acquisition strategies to reducing the field operational effort. We also determine that the simultaneous implementation of source blending, sparse geometry, and band limitation leads to a significant data compression where the size of the incomplete data in the frequency-space domain is much smaller than the size of the complete data. This reduction is indicative of survey cost and duration that our acquisition strategy can save. Synthetic and field data examples demonstrate the applicability of the proposed approach. Despite the reduced amount of information available in the incomplete data, the results obtained from the numerical and field data cases clearly show that the machine-learning scheme effectively performs deblending, trace reconstruction, and low-frequency extrapolation in a simultaneous fashion. It is noteworthy that no discernible difference in prediction errors between extrapolated frequencies and preexisting frequencies is observed. The approach potentially allows seismic data to be acquired in a significantly compressed manner while subsequently recovering data of satisfactory quality.

Funder

INPEX Corporation

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3