Scattering-based focusing for imaging in highly complex media from band-limited, multicomponent data

Author:

Vargas David1ORCID,Vasconcelos Ivan1ORCID,Sripanich Yanadet2ORCID,Ravasi Matteo3ORCID

Affiliation:

1. Utrecht University, Department of Earth Sciences, 3584 CB Utrecht, The Netherlands.(corresponding author); .

2. PTT Exploration and Production Public Company Limited, Chatuchak, Bangkok 10900, Thailand..

3. King Abdullah University of Science and Technology, Earth Science and Engineering, Thuwal 23955, Saudi Arabia..

Abstract

Reconstructing the details of subsurface structures deep beneath complex overburden structures, such as subsalt, remains a challenge for seismic imaging. Over the past few years, the Marchenko redatuming approach has proven to reliably retrieve full-wavefield information in the presence of complex overburden effects. When used for redatuming, current practical Marchenko schemes cannot make use of a priori subsurface models with sharp contrasts because of their requirements regarding initial focusing functions, which for sufficiently complex media can result in redatumed fields with significant waveform inaccuracies. Using a scattering framework, we evaluate an alternative form of the Marchenko representation that aims at retrieving only the unknown perturbations to focusing functions and redatumed fields. From this framework, we have developed a two-step practical focusing-based redatuming scheme that first solves an inverse problem for the background focusing functions, which are then used to estimate the perturbations to focusing functions and redatumed fields. In our scheme, initial focusing functions are significantly different from previous approaches because they contain complex waveforms encoding the full transmission response of the a priori model. Our goal is the handling of not only highly complex media but also realistic data — band-limited, unevenly sampled, free-surface-multiple contaminated data. To that end, we combine the versatility of Rayleigh-Marchenko redatuming with our scattering-based scheme allowing an extended version of the method able to handle single-sided band-limited multicomponent data. This scattering-Rayleigh-Marchenko strategy accurately retrieves wavefields while requiring minimum preprocessing of the data. In support of the new methods, we evaluate a comprehensive set of numerical tests using a complex 2D subsalt model. Our numerical results indicate that the scattering approaches retrieve accurate redatumed fields that appropriately account for the complexity of the a priori model. We find that the improvements in wavefield retrieval translate into measurable improvements in our subsalt images.

Funder

Utrecht Consortium for Subsurface Imaging

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3