Azimuthal multiple signal classification of dispersive and aliased surface waves recorded in 3D seismic acquisition

Author:

Yang Chunying1ORCID,Wang Wenchuang2

Affiliation:

1. China University of Geosciences (Beijing), School of Geophysics and Information Technology, Xueyuan Road 29, Haidian District, Beijing 100083, China and National University of Singapore, Department of Civil and Environmental Engineering, Singapore 117576, Singapore. (corresponding author)

2. BGP R&D Center, BGP Sci-Tech Park, Huayang East Road, Zhuozhou 072750, China.

Abstract

Irregular acquisition geometry causes discontinuities in the appearance of surface wave events, and a large offset causes seismic records to appear as aliased surface waves. The conventional method of sampling data affects the accuracy of the dispersion spectrum and reduces the resolution of surface waves. At the same time, “mode kissing” of the low-velocity layer and inhomogeneous scatterers requires a high-resolution method for calculating surface wave dispersion. This study tests the use of the multiple signal classification (MUSIC) algorithm in 3D multichannel and aliased wavefield separation. Azimuthal MUSIC is a useful method to estimate the phase velocity spectrum of aliased surface wave data, and it represents the dispersion spectra of low-velocity and inhomogeneous models. The results of this study demonstrate that the mode kissing affects dispersion imaging, and inhomogeneous scatterers change the direction of surface-wave propagation. Surface waves generated from the new propagation directions also are dispersive. The scattered surface wave has a new dispersion pattern different from that of the entire record. Diagonal loading is introduced to improve the robustness of azimuthal MUSIC, and numerical experiments demonstrate the resultant effectiveness of imaging aliasing surface waves. A phase-matched filter is applied to the results of azimuthal MUSIC, and phase iterations are unwrapped in a fast and stable manner. Aliased surface waves and body waves are separated during this process. Overall, field data demonstrate that the azimuthal MUSIC and the phase-matched filters can successfully separate aliased surface waves.

Funder

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3