Affiliation:
1. State Key Laboratory of Coal Resources and Safe Mining China University of Mining & Technology Beijing Beijing China
2. Institute of Mining Engineering Inner Mongolia University of Science and Technology Baotou China
Abstract
AbstractSurface‐wave information from seismic data can be used for near‐surface analysis, static computation and noise suppression. The multichannel analysis of surface waves method is a useful approach for obtaining the shear wave velocity of the near surface; however, rapidly generating an image of dispersive energy in the presence of coherent noise is a challenge. In this study, we propose the imaging of the dispersive energy of the Rayleigh wave using a spatial smoothing propagation method. In this method, forward and backward spatial smoothing algorithms were used to restore the rank of the covariance matrix in strong coherent noise. Subsequently, an image of the dispersive energy was rapidly generated by the propagation method using a linear operation equivalent to the eigenvalue decomposition. The proposed method was evaluated using both synthetic and field data. The results showed that the method was easy to use and has higher resolution representation, efficiency and noise robustness compared with conventional methods.
Funder
National Key Research and Development Program of China